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Abstract

A numerical technique based on a CFD-DEM method is presented for the
analysis of particle impact drilling (PID) systems. The method is build from a
preexisting finite element Navier-Stokes solver for the fluid phase and a discrete
elementmethodmodule for the steel particles which this drilling technology utilizes
to enhance the penetration rate. We provide a detailed description of the most
relevant implementation issues, including our choice of the hydrodyanmic forces
appropriate for power-law fluids. We also discuss several critical aspects related
to the validity of the simplifying assumptions that will be helpful to simulation
engineers. We apply our simple, one-way coupled approach on designs provided
by an industrial partner to illustrate its potential as an analysis tool for this promising
drilling technology.

Keywords: particle impact drilling, discrete element method, CFD-DEM, finite
element method, oil and gas.

1 Introduction
Particle-impact drilling (PID) refers to a special type of drilling technology for the oil
and gas industry in which the principal rock-erosive mechanism is based on the impact
of high-speed, particle-ladenmud jets on the substrate, rather than on the abrasive action
of the drill-bit cutters. PID systems are able to achieve greater rates of penetration than
their traditional alternatives [37, 27] and are especially suited for boring through very
hard rock [47, 59].
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08034 Barcelona, Spain. Email: gcasas@cimne.upc.edu
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In essence, a PID drill-bit is similar to a conventional one: it consists of a cutter
fixed at the end of a rotating tube through which the drilling mud is pumped from the
surface. A set of openings allow themud to flow out of the bit’s tip, cleaning the cuttings
and dragging them back to the surface through the annulus, i.e. the space contained
between the outer surface of the tube and the hole’s casing.

What sets PID systems apart are the small steel balls with which the drilling mud
is laden. These balls are added to the drilling fluid on the surface and recycled through
the system forming a relatively disperse, two-phase flow with the mud. The mix is
transported to the bottom of the hole, where it is violently accelerated as it passes
through any of the particularly narrow apertures (nozzles) positioned at the tip of the
drill-bit, forming highly energetic jets. In these jets the fluid velocity can surpass
200m s−1, transferring enough kinetic energy to the steel balls to effectively erode off
material from the rocky bed upon impact. Indeed, most of the erosion is generated
by this mechanism, although PID bits has a set of cutters nonetheless. Their role is
complementary to that of the jets, providing extra penetration power in particularly hard
rocks or an effective fall-back solution for cases in which the jets are insufficient or
working sub-optimally. A schematic diagram of PID technology is shown in Figure 1.

Despite the observed higher rates of penetration and the conceptual simplicity of
PID systems, their widespread use is still to materialize. In fact, there remain a number
of challenges associated with the use of steel particle-laden jets that require further
study, two of which are central to the present work:

First, it is important that the steel particles flow without trouble and do not accu-
mulate, neither in the interior of the drill bit nor between the bit and the rock outside.
Such accumulation could lead to several problems, including the clogging of the space
through which the drilling mud must flow, or a drop in the penetration speed due to the
shielding effect of the particles retained between the rocky bed and the drill bit.

Second, the presence of hard steel particles can generate an increased rate of wear
on the drill bit. In particular, two different mechanisms can lead to this wear: 1) Fast
moving particles that impact on the drill bit interior (in the acceleration phase) or its
exterior (rebound), and 2) Accumulated particles that form a bed between the drill bit
and the substrate. Both these issues provide criteria with respect to which it is possible
to optimize the bit designs and specifications.

However, it is difficult and costly to set up experiments for every single design
variation in order to provide the necessary data to evaluate its performance and guide
future adjustments. And even if one could afford to run these experiments, the extraction
of all the relevant data would still be a technical challenge. Therefore it is highly
desirable to complement experimental investigations with numerical analysis. Indeed,
numerical analysis has several advantages for the study of PID systems:

• It is relatively inexpensive.

• It has reduced limitations in terms of boundary conditions and material param-
eter values, even if the ranges of scales being represented simultaneously is,
nevertheless, limited due to the associated numerical cost.

• It provides a great versatility in terms of the types of data to be produced and
their attainable precision.
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• Prototypes are much easier to modify as compared to physical models.

Despite these advantages, very little work has been reported about the use of
numerical methods to the study the hydrodynamics of full PID systems. Among the
few exceptions we find the works [19, 28, 49, 35, 68], all based on finite volumemethod,
or the experimental work [67], that studied the rate of erosion of the substrate under
different impact conditions.

In this work we present a numerical method based on a Lagrangian-Eulerian,
point-particle approach [31, 56], where the flow disturbance caused by the particles is
considered a fine detail and is not resolved by the computational mesh. The particles
are treated as Lagrangian points and their motion is integrated based on the locally
averaged fluid field. This requires knowledge about the background fluid field (the
velocity and perhaps its derivatives) at the location of the particles. Since the fluid is
not resolved around the point-particles, the computational mesh needs not be any finer
than several times the particles radius, as long as the macroscopic behavior of the fluid
is well-captured ( Figure 3).

surface rotor 
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steel balls

casing
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Fig. 1 Diagram of workings of the
PIDwellbore, showing inflowmudwith
steel particles, and up-flow cuttings
wash-up.

Fig. 2 PID drill bit 

In this paper we focus on the one-way only coupled approach. That is, we ignore the
effect that the steel particles have on the flow. While somewhat rough, this assumption
simplifies the problem enough that it is worth to explore the possibilities of this approach
as a way to produce reasonable first approximations to the solution. This limits the
number of unknown input parameters and simplifies the sensitivity analyses. Our first
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Fig. 3 Point-particle approach illustrated. The finite size of the particles
is only relevant to compute their contact interactions, not to calculate
their interaction with the fluid, for which only their center point (and
radius) is of relevance.

goal is to describe a numerical strategy in detail, including all the necessary elements
(fluid and particles models, drag force law, FEM discretization, time-stepping, post-
process tips etc.) for the implementation of the numerical method. Our second goal is
providing examples to illustrate the use of such a method for analysis of PID systems
useful for the design of prototypes. Two-way coupled strategies will be the subject of
future work.

The paper is organized as follows. Section 2 deals with the particle model chosen,
introducing the basic equation of motion and summarizing the basics and discussing
particularities relevant to the PID problem. Section 3 describes the basic equations
that govern the motion of the fluid phase model and their finite element discretization.
The previous two sections describe the fluid phase problems, basically as separate
mathematical problems. In Section 4 the coupling strategy that links both solutions
is described. Finally, in Section 5 we present example simulations to illustrate the
potential of the proposed methodology for the analysis of PID systems.

2 Model for the steel particles
The steel particles are modelled as spheres and their motion is simulated using the
discrete element method (DEM). Our particular implementation is largely standard and
a complete description of the algorithm falls outside the scope of this work. Thus,
the reader is referred to the standard literature on the subject (see [11] and references
cited therein) for details about this numerical technique. In the following subsections
we discuss a selection of topics specifically chosen for their relevance in relation to the
problem at hand.

2.1 Basic ingredients of the DEM approach
Let us briefly review the fundamentals of the DEM algorithm. For a recent, widely
general review on the subject, see [23]. The DEM consists in the numerical integration
of the trajectories of a number of particles, that move according to Newton’s laws
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under the action of both external forces, such as their own weight, and contact forces
that act between particles when they become close enough. The numerical integration
is typically computed with a finite difference scheme, which in the great majority of
implementations is explicit in nature. Here we will also follow this approach. The
preference for explicit schemes has been justified in the literature [53] and the most
extended opinion is that the cost of an implicit implementation would not be smaller or,
at best, not justify its greater complexity and difficulty of implementation. Such view
is not, nonetheless, universal [33].

In the simplest versions of the DEM, each particle is modelled as a rigid sphere,
and its (rigid solid) movement is determined by the position of its center and its rotation
vector, both of which are evolved in time by the integration scheme. The presence of
boundingwalls can in turn bemodelled by a set of flat rigid faces. In our implementation
the bounding surfaces are triangulated in the pre-process step, so that each resulting
triangle defines a rigid face.

The most popular variety of the DEM, and the one used here, is called the soft-
spheremethod (as opposed to the hard-sphere method [50]). In this version the particles
are allowed to overlap (slightly) over each other and also penetrate the walls. A given
overlap is characterized by a point inside the overlap region, the contact point, and
its magnitude is represented by a scalar δindent (the indentation or penetration) that
measures how far into each neighbor the contact point has moved. Associated with it
there is a contact force and, sometimes, also a contact moment, to be added to the total
actions being applied to the particle. These contact forces and moments are typically
functions of δindent and its derivatives, and sometimes of their histories too. The simplest
versions include a linear spring and dash-pot rheological model, which depend linearly
on δindent and δ̇indent, although the contact model can become much more complicated,
often devised with a particular application in mind. Typically, there exist a number
of free parameters that allow to calibrate these micro-scale models by comparing the
resulting macroscopic motion with experimental results. The particular contact model
used in this work is described in Section 2.1.1.

Another crucial component of any DEM method is an efficient algorithm to deter-
mine the potential contacts that take place at every step of the calculation. In order to
avoid the O(N2) (where N is the number of particles plus walls) scaling of brute-force
check of all the possible overlaps, a suitable search algorithm is used to determine the
correspondence between each particle and its neighbors. State-of-the-art algorithms
achieve O(N log N ) scaling or even O(N ) [64]. Specifically, we use a binning strat-
egy for both particles and triangular elements for which the hierarchical method is
applied [54]. The search is performed in an alternate fashion, between time-integration
steps, often with a lower frequency than the time integration steps, as described in Sec-
tion 2.2.

To summarize, the DEM algorithm looks like the one presented in Algorithms 1
and 2.

The equation of motion of the particles is given by

mp
dv
dt
= ξC

NP∑
kP=1

Fkp +

NW∑
kW=1

FkW + Fcoup B F (1)
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Algorithm 1 General DEM algorithm
1: tDEM ← 0.0 . time
2: m ← 0 . steps
3: InitializeParticles( ) . with the given initial conditions
4: Searchneighbors( ) . Hierarchical method [54]
5: while tDEM < tEnd do
6: tDEM ← tDEM + ∆tDEM
7: m ← m + 1
8: SolveDEM(tDEM,m) . Algorithm 2

Algorithm 2 Algorithm for function SolveDEM(tDEM,m)

1: for p = 1, . . . , Nparticles do . for each particle
2: xp,m+1 ← UpdatePosition(xp,m, vp,m) . eq. (3a)
3: MoveRigidParts(tDEM)
4: if IsSearchStep(Nsearch, m+1) then . search every Nsearch steps
5: SearchNeighbors( ) . assign neighbors (particles + walls) to particles
6: for p = 1, . . . , Nparticles do . force and moment on each p eq. (1)
7: F∗p,m+1 ← ExternalForces(xp,m+1, vp,m) . weight and fluid interaction

forces
8: for q = 1, . . . , nneigh,p do . for each neighboring particle
9: F∗p,m+1 ← F∗p,m+1 + BallToBallForce(xp,m+1, vp,m, xq,m+1, vq,m)

10: for r = 1, . . . , nneigh,r do . for each neighboring wall
11: F∗p,m+1 ← F∗p,m+1 +WallToBallForce(xp,m+1, vp,m, xr,m+1, vr,m)

12: for p = 1, . . . , Nparticles do . for each particle
13: vp,m+1 ← UpdateVelocity(vp,m, Fp,m+1) . eq. (3b)
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where mp is the particle mass, kp runs over all the neighboring particles, kw over all
neighboring triangular rigid walls, and where the binary parameter ξC ∈ {0, 1} is intro-
duced to easily turn off inter-particle interactions as required (such as in Section 5.7).
The first two terms correspond to the contact forces, which are only actually computed
if the corresponding neighboring wall or particle center fall within the ball centred at
the target particle’s center with radius equal to the search radius. The search radius is
defined as the particle radius plus a tolerance that is tuned to optimize the computational
cost. Such optimal cost is to be found as an ideal balance between the cost of running
the search algorithm at every time step (necessary if the search tolerance is set to zero)
and that of having a larger number of neighbors per particle as a result of the enlarged
search tolerance; see Section 2.2. Finally, the additional term Fcoupling has been added
to represent the inter-phase force, which will be discussed in Section 4. Clearly all the
variables in eq. (1), except for ξC, are different for different particles.

Furthermore, in many situations it is important to include the rotational degrees of
freedom. The angular equation of motion reads

Ip
dω
dt
= T coup +T cont (2)

where Ip is the moment of inertia of the particle (a scalar for a sphere, otherwise the
whole inertia tensor should be used), where T cont is the sum of the moments due to the
contact forces FkP and FkW in eq. (1) between overlapping particles and particles and
solid surfaces. A term T coup is provided to model the moment applied by the fluid on
the particle.

Remark. One could additionally consider the contributions from contact moments
directly applied at the contact point in eq. (2), which would need to be added to the
moments produced by the contact forces; i.e., the rolling friction [63], although we
ignore them here for conciseness

Note that eqs. (1) and (2) neglect all fluid-mediated interactions between neighboring
particles, what is sometimes called three-way coupling [40]. For possible extensions to
include these effects see [4, 51]. The particular forms of the coupling force and moment
are discussed in Section 4.1.

2.1.1 Contact model

The contact model is the rheological model that relates the kinematics of a contacting
pair with the force and moment between both particles involved (a plane can be seen as
an infinite-radius particle). The kinematics in the DEM contain a number of subtleties
that we will not cover here, but they can be roughly characterized by the evolution
of three degrees of freedom (DOFs) per contact pair: the instantaneous values of the
indentation and its derivative (i.e. normal motion; one DOF) and the historically
accumulated tangential motion and its derivatives (two DOFs). The latter is defined as
the integral of the relative tangential motion projected onto the plane that passes through
the contact point and is orthogonal to the segment joining the particles’ centres. Note
that for the tangential degrees of freedom it is necessary to store historical information,
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since there is no way to derive the extension of the tangential springs from just the
instantaneous relative positions of the particles involved [9].

Our contact model, which was proposed by [58] (see also [9]) includes a Hertzian
spring-dashpot model with no sticking [48] for the normal motion and a Deresiewicz–
Mindlin spring-dashpot model connected in series with a frictional element for the
tangential motion. This normal element is characterized by the Young’s modulus of
the material and the coefficient of normal restitution (COR), while the tangential one
is characterized by a friction coefficient (µp,q , where p and q identify the materials of
the two particles involved) in addition to the Young’s modulus and a tangential viscous
dissipation coefficient.

The COR is the ratio of the normal component of the post-rebound velocity over
the same component of the incident velocity, and is generally bounded between zero
and one. It is a useful engineering parameter that characterizes the amount of energy
dissipated by an impact, depending on the nature of the materials involved. However,
it must be kept in mind that the assumption of it being independent of the incident
velocity is actually not entirely correct [34] and so the COR is not, strictly speaking, a
material parameter, but only approximately so.

Both friction coefficient and the CORmust be chosen to match the physical behavior
of the material. However, the Young’s modulus can be altered without significantly
modifying the macroscopic motion of the particles in certain circumstances. This
possibility is very advantageous, since it allows to increase the time step substantially
(Section 2.1.2).

2.1.2 Time integration scheme

In order to solve eq. (1) (together with a suitable initial condition x(0) = x0), we
use a finite difference scheme. Several options are possible but we have run our
simulations using the a version of the two-step Adams–Bashforth scheme, which has
been extensively tested. The difference equations are

xn+1 = xn +
δt
2

(3vn − vn−1) (3a)

vn+1 = vn +
δt

2mp + m f

(
3F∗n − F∗n−1

)
(3b)

Where F∗ is the total force F calculated at the current position minus the terms propor-
tional to the acceleration of the particle in the added mass force (Section 4.1.1), which is
treated implicitly by increasing the mass of the particle by m f /2, where m f is the mass
of a volume of fluid displaced by the particle. This two-step scheme can be started with
the analogue, first step version of the same algorithm. We have found this modification
to improve stability when contact is taken into account. A similar algorithm is used for
the integration of the angular motion.

Remark. Note that, strictly speaking, we are not following eq. (3) in that the contact
forces are being evaluated with amix of updated position (xn+1) and old particle velocity
(vn), as indicated in Algorithm 2.
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2.2 Scales
The introduction of soft-sphere DEM particles in the fluid dynamics simulation im-
plies that a new, (short) time scale needs to be resolved: the contact time scale. In
Section 2.1.1 we mentioned that our contact model (as in the most common DEM
applications) is composed of an elastic element arranged in parallel with a dissipative
element, typically of viscous nature. This kind of arrangement is known as a spring-
dashpot model. The role of the dissipative element is to ensure that a correct amount
of energy is lost at each impact, since no real (macroscopic) system is perfectly elastic.

Remark. Note that intensity of the dissipation element cannot in general be tuned for
numerical reasons, since it controls the value of the COR, which determines the amount
of energy dissipated at each impact as mentioned above. This is a crucial physical
property that affects the macroscopic behavior of the system, specially in collisional
regimes [1] (the motion is mostly formed of a succession of collisions alternated with
contact-less, ballistic motion).

On the other hand, the action of the elastic element is typically less constrained by
the physics, as long as it is stiff enough. Indeed, the fundamental reason for introducing
the DEM method in the first place is that collisions are regarded as playing a non-
negligible role in the simulation. Therefore, at the very least, it is always necessary to
ensure the non-penetrability of the spheres through one another or through the walls.
Nonetheless, it is often not necessary to reproduce the real stiffness of the material
being simulated, as long as

1. Sufficient repulsion is achieved in all circumstances to avoid excessive penetra-
tion.

2. There is separation of scales [46], in time and space, between those dynamic scales
associated with free flight and those associated with the process of rebound.

3. The resulting computed trajectories are not too far from possible ones at more
realistic stiffnesses, as it might happen when extremely soft particles are able to
unrealistically squeeze through a narrow hole.

In many DEM simulations, specifically those dealing with moderately dense to disperse
regimes, such conditions can be achieved with stiffnesses significantly lower than the
real ones. In such a case, the elastic contact model can be interpreted as a mere
numerical device, reminiscent of the classic penalty model [62] in contact mechanics.
Next the advantage of being able to consider an artificially low stiffness is explained.

Choosing the time step size. The selection of a suitable time step is crucially impor-
tant in any DEM simulation, since it has a proportional impact on the numerical cost
of the simulations. As in any finite difference calculation, one would like to select the
time step based on the required accuracy, so as to minimize the total number of time
steps. However, the choice is also restricted by the need to preserve numerical stability,
which is always conditional to the size of the time step.

The analytical calculation of the optimal time step has been attempted in the
past [45], mostly based on the use of approximations, such as the linearization of
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the nonlinear force models to derive the critical time step of the mass-spring system for
an arbitrary pair of contacting particles. However, such calculations are too complex in
practice or lead to excessively rough estimates of little practical value. We have based
our choice of the time step on experience, often requiring a certain number of iterations
in order to attain a good compromise between accuracy and cost.

Nonetheless, we do not proceed blindly, but actually apply a criterion that we next
describe and that will also provide an argument to explain the high computational
demands of this numerical approach.

• The smallest scales represented in our simulations correspond to the contact
dynamics, and consequently it is the contact that dictates the maximum allowable
time step, not the interactions with the fluid (only the added mass force, FA has
a response time at a comparable time scale, but we are treating it implicitly).

• As discussed above, the stiffness of the contact model is considered a numerical
parameter that can be softened to increase the critical time step for numerical
stability. This practice is acceptable as long as the three criteria given above
(sufficient repulsion, scales separation and realistic movement) are met.

• The contact must be properly resolved to avoid excessive numerical errors and
spurious energy creation. This is guaranteed by dividing the contact duration in,
at least 15 to 30 steps ( [30]), depending on the numerical scheme.

According to this, we first calculate the minimal expected contact duration. In
order to do that, we use the formula that can be found in [9] (see also [2]), valid for
Hertzian contact. For Hertzian contact laws, the contact duration decreases with the
impact velocity, so we use an estimate for the maximum impact velocity, which will
be comparable to the fluid speed inside the nozzles, as a worst-case scenario. Once
we have the minimal expected impact duration, we divide it by a large enough number,
say fifteen, to bound the time step above. Finally, we apply a security factor to further
reduce it. We have observed that using this technique leads to robust estimates for the
optimal time step, limiting the need for trial-and-error. Typically, the resulting DEM
time step is about 1000 times smaller than that used by the fluid solver (see Table 4).

2.3 Wear
It is interesting to be able to predict the level of wear on the different surfaces of the
drill bit under the repeated impact of the steel particles. While a quantitative prediction
is certainly challenging, there is certainly a great potential for the prediction of relevant
qualitative trends, such as:

• the location of intense wear concentrations

• the sensitivity of the wear spread pattern upon changes in the design and operation
parameters

• the identification of unexpected wear mechanisms

• the classification of frictional wear versus impact wear regions
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We have implemented a simple wear model to illustrate these points. During the
contact of a particle against a wall, a finite impact wear (∆Wimpact) contribution is
calculated according to

∆Wimpact ∼ ρpd2
pUn (4)

where Un is the normal relative velocity between the particle and the triangular surface
and dp is the particle diameter. This quantity is then divided by the face area and
distributed to the nodes using the triangle’s linear shape functions. Note that while the
factors in eq. (4) surely contribute to the wear, we have arbitrarily set their effect to be
multiplicative, as well as their powers for simplicity. The resulting units of Wimpact are
of mass per unit time and area; so it could be interpreted as the mass lost to erosion per
unit area on the surface. A realistic model would require further investigations and this
is left for future work.

2.4 Analytic tools
Taking advantage of the object-oriented philosophy of our solver (KratosMultiphysics [20]),
we have generalized the notion of the discrete element to to that of the analytic discrete
element. This type of element is designed to collect information during a simulation by
increasing its associated data-structures in a trade-off of information vs. computational
efficiency.

The basic concept consists in allowing a number of the discrete elements to be
marked as analytic, behaving as the discrete element they generalize but performing a
few extra operations and recording extra data. These elements are constantly monitored
by an external process that collects the information stored in each of them. The
specific data stored in the data structures associated with these discrete elements are
best understood by example. Here we give a brief account of two variants of analytic
element that we have implemented in our code.

2.4.1 Analytic particles

The analytic particle is a discrete element that interacts with other particles exactly
like the rest but that keeps a record of the impact data associated to its contacting
neighbors at a given time step. This means that the information is only related to a
specific time step and thus must be collected at every time step or else it is lost. This
design requires an operation to be added to the DEM solution with the same frequency
as the DEM solution itself, but is only (relatively speaking) costly if the proportion of
analytic particles is comparable to the total number of particles in the domain. The
information collected from all the particles is stored in a database for later analysis. We
use HDF5-format files to store and manage this data.

The reason of this design is to keep the data structures associated to the discrete
elements as small as possible, so as to make the most out of the available cache.
Having memory-wise very heavy particles would result in extremely slow computations
overall, spoiling the efficiency of the program. By limiting the total number of possible
simultaneous impacts to a few (in our case, only four), the data structures are kept at a
fixed size, avoiding allocation/deallocation on the fly. Note that it is extremely unlikely
that more than four impacts occur at exactly the same time step.
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The precise information kept per impact may vary, but a useful combination is to
keep the impact velocity (normal and tangential to the particle surface), the ID of the
other particle and the positions at the moment of impact. This information can be used
in simulations to keep track of the impact frequency and violence [26] and other aspects
of the interaction, such as chemical exchanges, etc.

2.4.2 Analytic surfaces

By counting the triangular rigid faces as DEM elements too, one can generalize them in
a similar way as we have explained with analytic particles. We have thus devised a type
of analytic surface with the particularity of not affecting the the motion of contacting
particles. Instead, these surfaces make measurements of the particles as the latter
traverse them. This allows, for example, to measure fluxes of particles. The versatility
of the DEM rigid faces is inherited by these flux-measuring particles, which may be
obtained from triangulations generated by applying the standard FEM mesher to any
complicated cross-section. The information is again stored in appropriate HDF5 files
for posterior analysis.

3 The continuous-phase problem

3.1 Fluid model
Let us describe the problem corresponding to the continuous phase when considered
uncoupled to the disperse phase. We restrict our attention to incompressible fluids, the
motion of which can be modelled by the Navier–Stokes equations:

ρ f
∂u

∂t
+ ρ f (u · ∇) u − µ∇2u + ∇p = f

∇ · u = 0




in Ω × [0,T )
(5a)

(5b)

where u is the fluid velocity, p is the pressure, f is an external body force (for example,
the specific weight), ρ f is the density of the fluid and µ its viscosity.

Let us assume that the domain’s boundary ∂Ω is partitioned into Dirichlet (ΓD) and
Neumann (ΓN ) parts with ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅ and that the problem
described by eq. (5) is completed with suitable initial and boundary conditions:

u = u0 in Ω × {0}
u = uD on ΓD × [0,T )

σ · n = tN on ΓN × [0,T )

(6a)
(6b)
(6c)

where u0 is the initial velocity field, uD the velocity fixed on ΓD , n the exterior unitary
normal vector on ΓN , tN the imposed surface traction on ΓN , and where the Cauchy
stress tensor σ is defined as

σ = −pI + τ (7)

where τ is the shear stress tensor.
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The typical drilling mud used in the oil and gas industries has a non-Newtonian
behaviour [17]. This means that its motion is not well-approximated by the standard
Navier-Stokes equations, which assume the viscosity coefficient to be a constant. In
this context, it is common to assume that the fluid is of a Herschel–Bulkley type [36]
instead.

The constitutive equation for this type of fluids can be written as a generalized
Newtonian fluid, where the constant viscosity is replaced by an effective viscosity µeff
as a function of the flow. The shear stress τ can be thereby defined as:

τ = 2µeff(γ̇)S (8)

where γ̇ is the local strain rate, given by

γ̇ =
√

2S : S (9)

with S being the symmetric gradient of velocity.
In particular, a Herschel–Bulkley fluid the functional dependence of the effective

viscosity on the strain rate reads

µeff =

{
µ0 if γ̇ ≤ γ̇0

K |γ̇ |n−1 + τ0γ̇
−1 if γ̇ > γ̇0

(10)

where µ0 is such that there is continuity at γ̇ = γ̇0. The material parameters K and
n are known as the flow consistency index and the behaviour index respectively. One
distinguishes between shear thinning fluids (n < 1) and shear thickening fluids (n > 1).
The fluid becomes less viscous with increasing shear rate in the former, while the
opposite is true for the latter. Drilling muds are all of the shear thinning type [36].

3.2 Finite element discretization
The FEM is based on the weak version of the problem formed by eq. (5) and eq. (6),
which is to find (u; p) ∈ X B VD × Q, where VD and Q are appropriate function
spaces for the velocity (vectors already fulfilling the Dirichlet boundary conditions) and
the pressure fields.

ρ f (
∂u

∂t
, v) + ρ f (u · ∇u, v) + µ(∇u, ∇v) − (p,∇ · v) = 〈 f , v〉

(q,∇ · u) = 0
(11)

for all (v; q) in Y B V0 × Q, whereV0 is the space of velocity-like fields that vanish
on the Dirichlet boundary.

The basic strategy in the FEM is to replace the relevant (infinite-dimensional)
spaces of functions above with finite dimensional counterparts in the variational version
of the problem which leads to the algebraic system of equations that must be solved
computationally.

Let us consider a conforming finite element partition Th of the domain Ω. For
each element in the domain Ωe ∈ Th we denote its diameter as he and we define
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h = max {he |Ωe ∈ Th }. With these tools it is possible to construct the finite element
spaces in the usual way, as Xh = VD,h × Qh , with VD,h ⊂ VD , Qh ⊂ Q. The finite
element solution will be a function Uh = [uh, ph] ∈ Xh , and since we will be using
equal-order spaces for the velocity and the pressure, the solution can be expressed as
(summation is assumed for repeated indices)

uh, j = NbUb
j , ph = NbPb (12)

for j = 1, ..., ndim and b = 1, ..., nnodes; where the Nb are the shape functions, ndim is the
number of space dimensions (2 or 3) and nnodes is the total number of mesh nodes.

Once the finite element discretization is defined, the problem presented in Equation
(11) can be expressed using a compact notation as find Uh ∈ Xh such that

(M
∂

∂t
Uh, Vh) + B(Uh,Vh) = L(Vh) ∀Vh ∈ Xh,0 (13)

with

B(Uh,Vh) B (uh · ∇uh, vh) − (ph,∇ · vh) + (∇ · uh, qh) + ν(∇S (uh),∇vh) (14)

L(Vh) B ( f , vh) +
∫
ΓN

tN · vh dΓ (15)

and

M =



ρ f 0 0 0
0 ρ f 0 0
0 0 ρ f 0
0 0 0 0



(16)

3.2.1 Stabilization

In the present work we want to make use of the simplest linear simplex elements, for
both the pressure and velocity approximations. However, for problems of the form
of eq. (13) (i.e., saddle-point problem, see [8]) not all velocity-pressure element pairs
lead to viable numerical methods. A necessary condition to guarantee the stability
of a particular combination is that the finite element spaces must fulfil the inf-sup or
Ladyzhenskaya-Babusška-Brezzi (LBB) condition [8], and, in particular, the equal-
order, piecewise linear spaces for the velocity and for the pressure (P1/P1 element) do
not fulfil this condition [22]. Nonetheless, one can resort to stabilization methods to
fix the numerical method resulting from the use of element pairs not fulfilling the LBB
condition by modifying the weak form of the problem.

The Variational multiscale method (VMS) [25, 12] method provides a theoretical
framework for the development of stabilized finite element formulations. These are
based on the explicit consideration of the decomposition of the continuous solution into
a part belonging to the finite element space Xh and its complement in the continuous
solution space X̃, or subscale.

In this work we consider the algebraic sub-grid scales (ASGS) variant of VMS [13],
which leads to rewriting the problem eq. (13) as find Uh ∈ Xh such that

(M
∂

∂t
Uh, Vh) + BASGS (Uh,Vh) = LASGS (Vh) (17)
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where BASGS (Uh,Vh) and LASGS (Vh) are computed by adding a number of stabi-
lization terms to the analogous terms in eqs. (14) and (15), respectively. The resulting
discrete problem does not suffer from the numerical instabilities that affect the Galerkin
problem and allows us to work with the simplest finite element pair. A detailed deriva-
tion of the stabilized equations can be found in [10, 16].

3.3 Time integration and linearized system of equations
After assembling all the elemental contributions and imposing the boundary condi-
tions, eq. (17) leads to a system of equations of the form

M

[
∂U
∂t
0

]
+ C(U,P)

[
U

P

]
= F (18)

whereU and P stand for the nodal unknowns of the velocity and pressure respectively.
For the time discretization we us a second-order Bossak time integration scheme [66],
which defines the velocities as

[
U

0

]n+1
=

[
U

0

]n
+ ∆t *

,
(1 − γN )

[
∂U
∂t
0

]n
+ γN

[
∂U
∂t
0

]n+1
+
-

(19)

The Bossak method introduces a relaxation factor in the acceleration of the system
in eq. (18)

(1 − αB)M
[
∂U
∂t
0

]n+1

+ αBM

[
∂U
∂t
0

]n
+ C(Un+1,Pn+1)

[
U

P

]n+1
= Fn+1 (20)

where n is the time-step index. Combining eqs. (19) and (20) and rearranging terms
one can rewrite eq. (20) in residual form as

R(Un+1,Pn+1) = F −
1 − αB

γN∆t
M

[
U

0

]n
+

(
(1 − αB)

(
1

γN − 1

)
+ αB

)
M

[
∂U
∂t
0

]n
+

−

(
1 − αB

γN∆t
M + C

) [
U

P

]n+1

(21)

where we choose α = −0.3 and γN = 1/2 − αB, as this combination of parameters
providesmaximal damping of the highest frequencies and a robust behavior overall [66].
The nonlinearities present in eq. (5) are linearized using a first-order Taylor expansion.
That is, at each nonlinear iteration i one solves

Rn+1
i+1 ≈ R

n+1
i +

(
∂R

∂U∂P

)n+1

i+1

[
δU
δP

]n+1
= 0 (22)

Then the solution and the residual are iteratively updated with Picard’s method as
[
U

P

]n+1

i+1
=

[
U

P

]n+1

i

+

[
δU
δP

]n+1

i+1

Rn+1
0 = R(Un,Pn)

Rn+1
i+1 = R(Un+1

i ,Pn+1
i )

(23)
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Algorithm 3 Solve Fluid solution step algorithm.
1: i ← 0 . initialize iteration index
2: δUn+1

0 , δPn+1
0 ← InitializeToZero()

3: Un+1
0 ,Pn+1

0 ,Rn+1
0 ← UpdateUnknowns(δUn+1

0 , δPn+1
0 ) . eq. (23)

4: while R
n+1
i

 > tolerance do
5: δUn+1

i+1 , δP
n+1
i+1 ← AssembleSystemAndSolve(Un+1

i ,Pn+1
i ) . eq. (25)

6: Un+1
i+1 ,P

n+1
i+1 ,R

n+1
i+1 ← UpdateUnknowns(δUn+1

i+1 , δP
n+1
i+1 ) . eq. (23)

7: i ← i + 1

where, in evaluating the derivative of the residual, we use the following approximation

∂R

∂U∂P
≈

1 − αB

γN∆t
M + Cn+1

i (24)

where the indices are applied only to matrix C, asM does not depend on the solution.
Note that this approximation assumes that the variation of C is moderate compared to
that of the solution vector itself, otherwise, convergence problems can appear. Conse-
quently, the final system to be solved reads

−

(
1 − αB

γN∆t
M + Cn+1

i

) [
δU
δP

]n+1

i+1
= Rn+1

i (25)

Algorithm 3 summarizes a schematic fluid solution step.

4 Coupling strategy
The overall PID problem involves different material components whose behavior may
or may not significantly affect the others.

Specifically, the drill bit is modelled as a rigid solid whose motion is imposed.
The fluid phase is modelled as explained in Section 3 and it responds to the motion
of the drill bit by means of an arbitrary Lagrangian-Eulerian (ALE) strategy, which
accounts for the movement of the fluid mesh. Essentially, the drill bit rotating velocity
is imposed at all nodes of the fluid using a mesh velocity auxiliary variable, and then all
the terms in eq. (17) are computed using the difference between the velocity unknown
and the imposedmesh velocity. No-slip Dirichlet boundary conditions are applied at the
boundaries of the fluid domain. In addition, the motion of the particles is also affected
by the drill bit through contact with the DEM surfaces, which cover the drill bit walls.
All these coupling relations are schematically represented in Figure 4.

While the assumption that neither the fluid nor the particles affect the drill bit is
reasonable in the present context, the one-way coupled hypothesis of the fluid-particle
coupling requires further study. There exist no clear-cut rules by which one can infer
the applicability of the one-way only strategy, apart from perhaps the oft-cited 0 1%-
volume fraction of the disperse phase [21, 40]. However, the matter is subtle due to
the strong inhomogeneities that inevitably appear in the volume fraction distribution of
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fluid particles

structure

forward

no-slip
(ALE)

wear

contact

contact

Fig. 4 Conceptual diagram of interactions taken into ac-
count in the PID example.

the particles; see [10]. In this work, the average volume fractions are above the 0 1%
limit (it is closer to 1% on average), so a simple one-way coupling strategy cannot be
justified a priori. Nonetheless, we have left this issue for future work, since we believe
this simplifying assumption may be sufficiently accurate in a number of practical cases,
while avoiding some of the difficulties and pitfalls (e.g., poor approximation of gradients
in thin tubes, small element size-to-particle diameter ratios etc.) associated with a two-
way coupled strategy.

4.1 Coupling forces
The one-way coupling considered in this work is completely determined by the terms
Fcoup and T coup in eqs. (1) and (2). The formulation chosen here is based on the linear
decomposition of several hydrodynamic effects and it is valid for a small but finite-sized
particles [41]. That is, the fluid-particle coupling force is

Fcoup = Fhydr + FB (26)

where Fhydr denotes the hydrodynamic force and FB is the buoyancy force. The latter
is taken to be simply the Archimedean push due to the hydrostatic pressure alone, that
is

FB = (mp − m f )g (27)

The hydrodynamic force is given by the following combination:

Fhydr = FU + FA + FD + FH + FL (28)

where FU stands for the unperturbed fluid force, FA for the added mass force, FD for
the viscous drag force, FH for the viscous history force (unsteady part of the viscous
drag) and FL is the lift force ( [40]).
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In order to simplify the formulation, we will neglect both FH and FL. FH is
expected to be small, since this force is only significant at very small Reynolds numbers
and for strongly oscillatory motions [14], which are not representative of the expected
(and observed) motion of the rather inertial particles and moderate levels of ambient
turbulence (agitation). It is less obvious that the lift forces can in fact be neglected.
Nonetheless, we have done so for the following reasons:

• No suitable lift force model for the lift in a power-law fluids is currently available

• The lift force has, for heavy particles, a much smaller magnitude than other
forces, like the drag force in most turbulent regimes [65, 42] (except for particles
that spend a lot of time inside the boundary layer [32]), and so it can be treated
as a correction to a simpler model than neglects it, which is left for future work.
This means it is likely that neglecting this force does not alter very significantly
the qualitative conclusions of this work.

Similarly, one can consider an expression for the torque, although we will neglect
its effect in this work (i.e. T coup ≡ 0) for similar reasons. Next the form taken by each
of the terms on the RHS of eq. (28) is discussed.

4.1.1 Unperturbed fluid and added mass forces

In the inviscid-flow limit, valid for vanishing viscosity, the equation of Auton–Hunt–
Prud’Homme applies [3], which is in the form of eq. (26) (neglecting lift):

Fhydr = FU + FA (29)

FU denotes the force that the sphere of fluid displaced by the particle would feel if
taken as a point-mass. This force should correspond to its mass, m f , multiplied by its
acceleration, that is, the material acceleration of the background fluid field, as measured
at the center of the sphere. Thus, this force reads

FU = m f
Du

Dt
(30)

where the capitalized derivative operator denotes the material derivative. Loth [39]
argues that the fact that the expression of FU is valid in these two regimes confirms that
the expression should be robust generically, and so we will assume this conclusion to
be applicable in the present context as well.

Similarly, with respect to the added mass force, the following expression holds both
in the inviscid and the vanishing particle Reynolds number limit,

FA =
1
2

m f

(
Du

Dt
−

dv
dt

)
(31)

Moreover, there is considerable evidence of its accuracy outside the theoretical range
of validity [61, 29].
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At the opposite limit (vanishing Rep) the equation of motion is instead given by the
Maxey–Riley equation (MRE) [43]. This time, the expression for the hydrodynamic
force is given by

Fhydr = FU + FA + FD + FH (32)

where the forces, with the same subindices as in eq. (29), denote forces with the same
physical meaning. In the MRE, both eqs. (30) and (31) are also applicable. Given that
the these forces are independent of the viscosity, we will assume that these expressions
are valid for the complete range of Reynolds numbers too and applicable also in the
context of power-law fluids.

4.1.2 Drag force

The drag force can be defined as the ensemble-averaged force experimented by a particle
submerged in a statistically stationary flow in the direction of the relative velocity
between the particle and the far-field averaged flow velocity. It can be expressed as

FD = −
1
2

ApCD ρ f ‖w‖ w (33)

where Ap is the cross-sectional area of the particle, w = v − u is the slip velocity and
where the drag coefficient (CD) is in general dependent on the Reynolds number based
on the particle size (Rep), the shape of the particle [38], the local solid fraction [7] and
the properties of the fluid.

No analytical expression the drag force is available for other than some ideal cases,
such as a the limit of vanishingly small Reynolds number of an incompressible, New-
tonian fluid. In this case, one has the Stokes drag law, defined by CD = 12/Rep
for

Rep =
W dp

2ν
(34)

where W is the magnitude of the slip velocity and ν is the kinematic viscosity. In
general, one must resort to (semi-)empirical models, obtained by applying curve-fitting
techniques on physical or numerical empirical data.

The literature on the hydrodynamic forces of a sphere submerged in a non-Newtonian
fluid is certainly much more scarce than that for Newtonian fluids. A comprehensive
review can be found in [5]. Here we employ the empirical expression proposed in [55]
to predict the terminal velocity of particles in power-law fluids in the context of drilling
operations. Their formulation has only been tested in stationary conditions but due to
our hypothesis of the additive decomposition of the different effects, we will consider
it adequate for our purposes. They provide the following expression for the empirical
drag coefficient

CD,Shah =
(
A2Re2B−2

p

) 1
2−n (35)

with the empirically determined parameters

A = 6.9148n2 − 24.838n + 22.642

B = −0.5067n2 + 1.3234n − 0.1744
(36)
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and where the particle Reynolds number is defined as

Rep,Shah = 2n−1 ‖w‖
2−n dn

p

K/ρ f
(37)

The model above is valid for n ∈ [0.281, 1] and Rep,Shah ∈ [0.001, 1000]. Note that
using the characteristic values calculated in Section 4.2 we can check whether the
conditions for the validity of this model are met. The value of n is clearly well into
the range of validity. In order to estimate the characteristic values of Rep,Shah we can
use the estimates for the mean velocity and assume a conservative value for the relative
velocity based on it, say 50 % of its value. For instance, in the inlet tube area ( Table 1),
this estimate would yield Rep ≈ 140, while this number could reach Rep,Shah ≈ 3000
inside the nozzles. Again, it is expected that the maximum relative velocity occurs
inside the nozzles and since the value of Rep,Shah is estimated to be only slightly greater
than the range of validity there, we will accept the associated error nonetheless. The
error associated with this choice is unknown but we do not expect it to be too large,
especially when taking into account the low degree of non-Newtonian behaviour (n
relatively close to one) of the mud.

4.2 Characteristic scales of the coupled problem
In order to verify the range of applicability of the different models and the level of
numerical resolution required for the simulations it is important to survey the different
scales involved in the problem.

4.2.1 Characteristic scales of the flow

Let us consider some characteristic scales relevant to the continuous problem. From Ta-
bles 2 and 3, one can estimate the average velocities in the different sections of the
geometry. Similarly, the fluid residence time (average time spent by the fluid molecules
in the domain) can be calculated by dividing the volume over the flux. These and other
derived quantities relevant to the fluid are included in Table 1.

A Reynolds number can be calculated for power-law fluids, following [44], as:

Rep,PL =
23−n

(3 + 1/n)n
U2−ndn

p

K/ρ f
(38)

who also experimentally derived the following criterion for the transition to turbulent
flow in a pipe:

Rep,PL > 2000 (39)

According to the estimates discussed above the flow in the inner inlet tube is expected
to be just on the verge of turbulence (Rep,PL ≈ 4000) and only moderately turbulent
in the nozzles (Rep,PL ≈ 20800 assuming equal distribution of flow among the four
nozzles). This is the maximum Reynolds number expected in the flow, as this is the
most constrained section of the conduct and

Rep,PL ∼ U2−ndn
p ∼ (d−2

p )2−ndn
p ∼ d3n−4

p = d−1.717
p (40)

20



which is monotonically decreasing. We thus expect a mostly laminar or transitional flow
regime, with some areas presenting weak turbulent or transitional regimes. Relatively
moderate turbulence is expected inside the nozzles.

With regards to the near-boundary resolution, one can calculate an analogue to the
y+ distance by [60]

y+PL = y+PL (y) =
τ1/n−1
w ρ f

K1/n y (41)

where τw is the shear stress at the wall, which can be estimated as

τw =
1
2

f ρ fU2 (42)

and where f is the friction factor f = 16/Rep,PL [44]. It is interesting to calculate the
distance from the wall, h+, at which y+PL = 1, since that is the size recommended for
the smallest computational cells placed close to it [36]. These values are summarized
in Table 1.

Table 1 Characteristic scales

Parameter Value Description
Flow

Uinlet 12.68 m s−1 average velocity in inlet tube
Unozzles 156.2 m s−1 average velocity in nozzles

tres 0.38 s total domain residence time
tres, internal 0.053 s internal domain residence time

h+inlet 2.8 × 10−4 m recommended size of computational cell
adjacent to the wall (inlet tube)

h+nozzles 1.8 × 10−5 m recommended size computational cell
adjacent to the wall (nozzles)

Particles parameters
dp 0.001 981 2 m diameter of steel particles
ρp 7850 kg/m3 density of steel particles

Mixed parameters
αp 0.021 solid volume fraction
αp,ρ 0.128 solid mass fraction

Operation conditions
Q 0.029 02 m3/s fluid flux

Ninlet 1.5 × 105 s−1 number of particles flux
Ωdrill −2 π s−1 angular velocity of drill-bit
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4.2.2 Characteristic scales of the particles

The Stokes number is a nondimensional measure of the particle inertia. It is defined
as the quotient between the particle’s relaxation time (a characteristic time that it takes
the fluid to slow down the relative motion of the particle) and the typical time scale of
the background flow fluctuations, T . For instance, in the range of applicability of the
MRE, the relaxation time is conventionally defined as the time taken by the particle to
be slowed down by the fluid to 1/e of its initial velocity. Using theMRE (and neglecting
FH) the Stokes number can be calculated as

St =
2ρ + 1

36
d2
p

ν

1
T

(43)

where ρ = ρp/ρ f . For this particular case, the relaxation time does not depend on the
initial relative velocity (the relaxation time is a constant). This is not strictly true for
our model, although this notion of a characteristic value for the Stokes number is still a
useful notion.

In Figure 5 the relaxation times for the steel particles are shown as numerically
calculated for different initial relative velocities. The range of values covers all the
values of interest in the domain and however the relaxation time is seen to remain quite
stable around 0.003 s. This time scale can thus be used as a reference relaxation time
in what follows.

10-1 100 101 102 103

W

0.0020

0.0024

0.0028

0.0032

0.0036

τ p

Fig. 5 Relaxation times for different initial relative velocities obtained
numerically using the drag model of Shah.

The Stokes number can be used to distinguish particulate flow regimes, classifying
them into ballistic (St > 1) and tracer-like (St < 1) with respect to the fluid motion
associated with the time scale T . When St is much greater than one, it is normally
assumed that the particles do not have time to respond to the fluid dynamics, see
for example the discussion in [6]. In order to estimate the importance of an accurate
description of the turbulent structures, it is therefore useful to look at the Stokes number.

For instance, we have seen that inside the nozzles we expect to find the most intense
turbulence. But since the particles move at about 100 m s−1 there, they only spend less
than 1 × 10−3 s in them. This means that St > 3 and most likely St � 3, as the typical
turbulent fluctuations will be significantly smaller spacial amplitude than the length of
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the nozzles. This means that it is mostly the mean flow that will dictate the trajectory of
the particles inside the nozzles. Note however that this is true as long as the drag force
is the dominating hydrodynamic force. We will come back to this question in Section 5.

4.2.3 Characteristic scales related to the interactions

In order to assess the importance of the influence of the particle in the flow, the most
important scale is the typical solid fraction, which is the global proportion of particles
volume to fluid volume [18]. Another interesting quantity is the solid mass fraction
αp,ρ that takes into account the different densities of the two phases. These quantities
can be preliminarily estimated assuming a homogeneous distribution of particles as

αp = Ninlet
Vp

Q

αp,ρ =
ρp

ρ f
αp

(44)

where Ninlet is the number of particles entering the domain per second, Vp =
1
6πd3

p is
the volume of one steel ball and Q is the fluid inlet flux. The characteristic values for
the present problem can be found in Table 1.

4.3 Overall algorithm
Given that the DEM phase has a much stricter time step requirements than the fluid,
due to the very small time scales associated to the contact dynamics that it resolves,
we employ a sub-stepping scheme so that, for every fluid time step, many DEM time
steps are performed. The fluid is advanced first, and then the DEM catches up in
smaller time step increments. The fluid field quantities are evaluated at every DEM
step too taking a weighted average between old and new fluid values. The pseudo-code
is shown in Algorithm 4, where Nf ,steps refers to the total number of fluid time steps in
the simulation and where tDEM keeps track of the time for the DEM phase. The code
implementation was done within the framework Kratos Multiphysics [20].

5 PID Simulations

5.1 Domain geometry
The geometry of the drill-bit and the surfaces defining the rocky bed and casing are
shown in Figure 6. The surfaces in red belong to the rotating part of the domain, while
the casing and ground surfaces are shown in a transparent blue. The inlet surface, at
which the inlet flow condition is imposed is marked yellow, while the outlet surface
(imposed normal traction) is marked in light green. In Table 2 we summarize several
useful measurements derived from the geometry.

5.2 Parameters
The values that have been kept fixed throughout this study are summarized in Table 3.
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bottom-up view

top-down view

Fig. 6 Depiction of the PID domain geometry.

Table 2 Geometric measurements

Parameter Value Description
Dinlet 0.053 975 m interior diameter of inner tube

Dnozzle 0.007 69 m interior diameter of nozzles
Lnozzle 0.086 m average length of the nozzles
Vtotal 0.0111 m3 total fluid domain considered

Vinternal 0.001 53 m3 fluid of internal domain (between inlet
surface and tip of nozzles)
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Algorithm 4 One-way-coupled two-phase algorithm.
1: t ← 0.0 . initialize fluid
2: n ← 0 . fluid step index
3: U0, P0 ← Uinit, Pinit
4: tDEM ← 0.0 . initialize DEM
5: m ← 0 . DEM step index
6: InitializeParticles( )
7: Searchneighbors( )
8: for n in [0, Nf ,steps] do . fluid solution loop
9: tDEM ← t
10: t ← t + ∆t . fluid time is advanced first
11: n ← n + 1
12: RotateMesh(t, n) . impose fluid mesh rotation
13: SolveFluid(t, n) . Algorithm 3
14: RecoverDerivatives( ) . [10]
15: while tDEM < t do . DEM sub-stepping
16: tDEM ← tDEM + ∆tDEM
17: m ← m + 1
18: LocateParticlesInFluid()
19: InterpolateFluidValues()
20: SolveDEM(tDEM,m) . Algorithm 2

Table 3 Physical parameters considered in this work

Parameter Value Description
Fluid parameters

ρ f 1294 kg/m3 density of fluid
n 0.761 flow behaviour index
K 1.24 Pa s0.761 flow consistency index

Particles parameters
dp 0.001 981 2 m diameter of steel particles
ρp 7850 kg/m3 density of steel particles

Operation conditions
Q 0.029 02 m3/s fluid flux

Ninlet 1.5 × 105 s−1 number of particles flux
Ωdrill −2 π s−1 angular velocity of drill-bit

5.3 Standard settings
Parameters. For the simulations we fix a number of parameters and options that we
summarize in Table 4. These settings correspond to the standard case (SC), and can be
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considered the default parameters. We will emphasize only the values of the parameters
that deviate from those in the SC to distinguish between different cases.

Table 4 Input parameters for the standard case run

Parameter Value Description
Coupling Parameters

ξU 1 Include FU and FA (0 or 1)
Contact parameters

µp,w 0.42 particle-wall friction coefficient
COR 0.6 coefficient of normal restitution

ξC 1 compute inter-particle contact (0 or
1)

Numerical Parameters

internal total

h 0.0026 m 0.004 m max. element size of irregular
mesh 1

hwall/h+nozzles 1.1 27 normalized width of elements
adjacent to nozzle walls

∆t 1.0 × 10−4 s 1.0 × 10−4 s time step for the fluid-phase
δt 5 × 10−7 s 1.9 × 10−7 s time step for the particles-phase

Boundary conditions. The boundary conditions imposed in all cases are a combi-
nation of strongly-imposed velocity conditions (uniform inlet velocity at the inlets and
no-slip at the walls) and weakly imposed Neumann condition at the outlets (zero normal
traction).

5.4 Internal flow results
We have run the standard internal flow simulations for a simulated time of 0.3 s. This
corresponds to more than five times the residence time of the internal subdomain.

Figure 7 shows a snapshot of the particles phase with different vectorial results
represented. Note the ≈ 50-fold ratio of the largest hydrodynamic force over the largest
drag force, due to the contributions of FU and FA around the entrance to the nozzles,
where the local fluid acceleration becomes very large.

Figure 8 shows the velocity modulus contour maps on several cross-sections. Note
the regularity of the flow in the inlet tube, where the Reynolds number is on the verge

1This number is only an estimation and is used by the mesh generator (advancing front) in [15] to build
the mesh.
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of turbulence. Note also the rotation-triggered vortices inside the three branches of the
distribution chamber both in the horizontal and vertical directions.

Figures 9a and 9b show two sets of streamlines at a particular time step. Figure 9a
shows a uniformly distributed selection of streamlines that passing through equally
spaced points along the inlet tube cross-section. Figure 9b shows a detail of streamlines
passing through a segment of points inside a bisecting plane of one of the three branches
of the distribution chamber. This figure highlights the convoluted direction of the flow
in this recirculation zone.

Similarly, Figures 9c and 9d show a number of particles trajectories in the interval
0.25 s to 0.3 s. Figure 9d shows a detail where the particle temporary trapping in the
recirculation zone is highlighted.

Fig. 7 Particles flowing under the action of the flow at t = 0.25 s. The
drag force and total hydrodynamic forces are shown.

5.5 Total flow results
The total flow cases have been run for a simulated time of 0.38 s, the concentration time
of the domain. In this case the mesh is slightly coarser than in the internal case for the
inner tube as the focus is placed on the annulus flow.

Figure 10 shows a sequence of three snapshots were the z-component of the velocity
is indicated with color on the particles surface. Significant inhomogeneities exist in the
solid concentration, which indicates the need for further research to study this effect.
Note that the particle size has been exaggerated by a factor 2.5 to facilitate observing
them.

Figure 11 shows the contour plot of the velocity for a series of transversal and
vertical cuts. Note that the velocities in the internal flow are above the maximum of
8 m s−1 in large parts of the domain in (Figures 11a and 11b).

In Figure 12 a sequence of contour plots of the level of wear on the rock bed is shown,
demonstrating the potential for this approach to help in assessing the performance of
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Fig. 8 Modulus of the velocity field at t = 0.25 s.

(a) (b) (c) (d)

Fig. 9 Fluid streamlines at t = 0.25 s (a,b). Uniformly distributed streamlines (a) and detail of
streamlines inside a vortical region (b). Particle trajectories for the interval 0.25 s to 0.3 s (c,d).
Randomly chosen spheres (c), detail of spheres inside a vortical region (d).
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changes in the design or the operation conditions. The action of the individual jets is
clearly visible.

t = 0.25 s t = 0.3 s t = 0.35 s

Fig. 10 Sequence of snapshots of the particles flowing under the action of the flow at
different times. The colors indicate the z-component of the velocity. The size of the
particles has been enlarged by 250 % to facilitate visualization.

5.6 Sensitivity analyses
Given the uncertainty in the model parameters, it is interesting to investigate the influ-
ence of a few of them separately. This should help in concentrating the research efforts
toward the most critical effects.

Coefficient of friction. We have investigated the effect of the coefficient of friction in
the contact dynamics of the particles, but we realized that it is very weak, and no clear
trend could be observed. This can be explained in terms of the fact that the prevalent
regime is on impact regime, where the particles are mostly bouncing off each other and
off the surfaces, rather than rubbing against each other. It is known that the friction
coefficient has a strong incidence on the angle of rebound in individual impacts [57].
However, this does not seem to bear any strong effect on the dynamics of the particles
as a whole, probably due to the randomized character of the collective dynamics.

29



Fig. 11 Modulus of the velocity field at t = 0.35 s.

t = 0.25 s t = 0.3 s t = 0.35 s

Fig. 12 Sequence of snapshots of the wear spread pattern evolution on
the bed surface (red: intense wear; blue: light wear).
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Coefficient of normal restitution. The coefficient of normal restitution was also
studied and, in this case, a relevant effect was observed. In Figure 13 snapshots of the
velocity field taken at the same time steps are compared between simulations that only
differ in the COR used. The central figure corresponds to the SC, with COR = 0.6,
while Figure 13a and Figure 13c correspond to COR = 0.2 (highly dissipative) and
COR = 0.8 (highly elastic). Clearly, the most dissipative case flows much more easily
as the particles concentrate near the path of the dominating streamlines into the nozzles.
When the COR is raised, the particles tend to occupy more space and accumulate more,
as the number of particles in the domain goes from 8759 (close to the value of 7850
calculated by multiplying the input αp by the domain volume) for the most dissipative
case, to 12 469 for the mildly dissipative case. This represents a 42 % increase after only
a quarter of a turn of the drill bit. Also, looking at Figure 14, the larger accumulation
of particles that appears with a higher COR leads to a more clear concentration of the
wear pattern near the entrance of the nozzles. Therefore, given the importance of the
COR, and since, in spite of what is commonly assumed in practice, it is known that the
COR is in fact not independent of the velocity [34], we must conclude that more work
is needed to characterize the contact with higher accuracy, especially given the large
range of characteristic velocities for different regions of the domain.

Strongly dissipative im-
pact (COR = 0.4);
8759 spheres in the do-
main at t = 0.20 s

Standard case (COR =
0.6); 10 040 spheres in
the domain at t = 0.20 s

Mildly dissipative im-
pact (COR = 0.8);
12 469 spheres in the
domain at t = 0.20 s

Fig. 13 Effect of variations in the coefficient of normal restitution (red:
intense wear; blue: light wear).

5.7 An attempt to simplify the problem
Given the complexity of the simulations of PID operations, it is interesting to look for
simplifying assumptions that can be made in order to reduce the computational cost
per simulation, or limit the number of parameters to be considered in the sensitivity
analyses. We have looked at two different possibilities:
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Strongly dissipative impact
(COR = 0.4)

Standard case (COR =

0.6)
Mildly dissipative impact
(COR = 0.8)

Fig. 14 Effect of variations in the coefficient of normal restitution on the
wear pattern (red: intense wear; blue: light wear).

Effect of neglecting inter-particle contacts. We have investigated the importance of
considering inter-particle contacts, since it would greatly simplify the analysis if we
could do without them at all in the following ways:

1. The computational cost would be greatly reduced, thanks to avoiding the most
expensive parts of the DEM algorithm (force calculation and search).

2. The parameter space would be reduced, since only the particle-wall contact
parameters would matter.

3. It would be possible to alter (increase) the given concentration of particles to
speed up the simulations, since each particle could be seen as an independent
statistical test.

Figure 15 shows that neglecting inter-particle forces is not possible, at least at the
current value of αp . When no interactions are used, the flow becomes more chaotic as
the particles do not become entrained in the general flow towards the nozzles. Therefore,
there is an increased rate of accumulation. Since the rate of inter-particle momentum
transfer is null, slow particles trapped in the recirculation region tend to remain there
for longer times, increasing the particles concentration artificially.

Pseudo-steady-state solution. We have also considered the possibility of simplifying
the problemby averaging the fluid field over a short time interval, and taking the averaged
field as the fluid field for the computations with particles. In order to obtain the average
field, the fluid-only simulation was run passed the initial transient phase and averaged
over a time interval (correcting for the rotation, of course) considered sufficient to
smooth out all the transients. Specifically, our criterion was to average at least for a
period equivalent to half the residence time of the flow. Figure 16 shows contour plots
comparing the velocity field for a single snapshot for the SC with the average field at
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Standard case at t = 0.20 s;
10 040 spheres in the domain at
t = 0.20 s

No interactions at t = 0.20 s;
12 788 spheres in the domain at
t = 0.20 s

Fig. 15 Effect of inter-particle interactions on the particles movement

the same instant. Note that the average field is only rotated with the drill bit, but does
not change relative to that solid-body motion.

Apparently, the large-scale characteristics of the flow are approximately well cap-
tured. However, we have found that this strategy (on its own) completely fails when
the particles are taken into account. The main reason for this seems to be that the
strong fluid accelerations around the entrance to the nozzles, when averaged over time,
create zones of low pressure that act as particle traps. When the flow is dynamic, these
low pressure pockets are unstable with the material acceleration changing vigorously
in time, so that no trapping occurs. Instead, for the averaged field, these regions act as
stable attractors to the particles, creating plugs.

5.8 Measuring particle fluxes
In this section we show results corresponding to an alternative geometry. Its design is
shown in Figure 17. Here the objective was to design a way to properly monitor any
difference in the performance of each of the nozzles. We designed a variant of the usual
DEM rigid walls of analytic type ( Section 2.4). The surfaces keep the information
about all the particles that cross them, their velocity and possibly other data, storing it
all in a single HDF5 file for later analysis.

Figure 18 shows the resulting measurements for the nozzle surfaces shown in Fig-
ure 17b. The method allows to monitor the performance of the nozzles, tracking both
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standard case (CFL = 40) averaged field

Fig. 16 Comparison of the modulus of the velocity field between the standard case at t = 0.25 s
and the pseudo-steady field averaged velocities.
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full drill bit geometry internal drill bit geometry

Fig. 17 Geometries of the PID drill bit with showing the flux measuring surfaces. The
surfaces are triangulations that can adapt to contours as in the left picture.
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Fig. 18 Flux of particles through nozzles calculated with a moving aver-
age with an averaging interval of 0.07 s. The ‘output’ refers to the sum of
the fluxes through the nozzles, while the expected flux corresponds to the
rate of injection of particles 1.5 × 105 s−1. The sign of the measurements
corresponds to the particular orientation of the normals that define the
measuring surfaces, which are all opposite to the sense of the main fluid
flow. The insert identifies the flux-measuring surfaces in a bottom-up
perspective.
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velocity and mass. Here we only show the number of particles per second that pass
through each of the nozzles, identified by the labels shown in the insert of the same
figure. The simulation was run for some time until the averages looked stable enough.
Clearly, there are important differences in performance between the different nozzles.
This type of result is a very good candidate for future validation, as the flux measure-
ments can be obtained through experiments. Unfortunately, no data was available to us
at the moment of writing this work, and such validation is left for the future.

6 Conclusions
We have described a numerical strategy for the simulation of PID operations based on a
simple one-way coupled strategy. We have presented a number of arguments in support
of our modelling choices and reported practical tips that we expect can help future
attempts to tackle this complex problem in practice. We have also demonstrated the
possibilities of the technology by highlighting how a number of effects of relevance to
the design of PID drill bits can be analysed for real geometries in operational conditions
and in a manageable amount of time.

Some of the the possible applications of our numerical method include

• The depiction of the internal flow of particles, including their distribution among
the several pipes.

• The prediction of wear concentrations, which can be used to assess the durability
of PID bit designs.

• The study of the return flow patterns, which can help to understand the movement
of particles and possible sources of clogging or undesired accumulation.

• The study of the sensitivity of the system to changes in the number of particles
and their granulometry.

Our analysis suggests possible reductions in the parameter space, such as the elim-
ination of the friction coefficient as an relevant parameter. It also highlights the im-
portance of other parameters like the COR, which should be determined with adequate
precision in order to build a sufficiently accurate numerical tool. The same analy-
sis highlights the need for further research to determine the validity of our simplified
coupling scheme, and in particular:

• Extending the validity of the drag law by Shah for larger Reynolds numbers and
testing it in instationary settings.

• Studying the importance of lift.

• Studying the effects of a more a sophisticated strategy that includes backward
coupling, since the suspension is not lean enough to neglect the influence of the
particles on the fluid phase a priori.
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The last of the items above is particularly relevant, since it constitutes a big simpli-
fication, especially in cases where the particles accumulate, as well as in narrow areas
where the volume of each particle cannot be neglected in principle. Such a strategy is
possible and is the subject of current work by the authors. Nonetheless, it is not without
difficulties:

• A two-way coupled strategy requires the use of spatially-filtered fluid equations,
introducing a measure of complexity that would certainly impact the practicality
of the methodology.

• The filtering techniques that are necessary to construct the fluid fraction and
related fields onto the fluid mesh (and that are used implicitly in deriving the
underlying theory) typically require the use of fluid elements that are significantly
larger than the particles, which is difficult to ensure in many areas of the problem
studied, and they become significantly less accurate near the boundaries [52, 24]
(of which there are plenty around the narrow passages through which the fluid is
forced).

• The availability of CFD codes capable of such problem and of engineers with the
necessary knowledge in the computational field is much more scarce.

In any case, in future work we plan to compare the results from the one-way and the
two-way coupled methods and analyse the sensitivity of their relationship to changes in
the parameters of the problem, such as the volume fractions.
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